
24 The Delphi Magazine Issue 44

Surviving Client/Server:
Power SQL
by Steve Troxell

Many times when I see experi-
enced programmers getting

started with client/server and SQL,
one of the most troublesome hur-
dles for them to overcome is to
break the mindset that SQL is only
good for getting the rows you want
and writing them back to the data-
base. To actually do anything with
the data requires writing code in
Delphi, C++, Visual Basic, or what-
ever. Actually you can get quite a
lot of work done with SQL. In many
cases you can do it more com-
pactly and succinctly. And with the
benefit of server-side processing,
some tasks can be done more effi-
ciently and with greater flexibility.
But when faced with a fairly com-
plex data manipulation task, the
first thought is usually ‘this is too
much for SQL, I’ll just read all the
data in and process it in Delphi
code, then write it back.’ Some-
times, that’s what you have to do,
or should do. But sometimes SQL is
well up to the challenge.

When working with relational
databases, most programmers are
accustomed to the traditional
equality relationship. That is, rows
in two tables are related to each
other by the virtue of there being
one or more columns in common
where the values in those columns
are identical. A master table of
invoices is related to a detail table
of items ordered by sharing an
invoice number between them.
The ordered items in the detail
table are related to a given master
invoice row when the invoice
number in the detail rows is equal
to the invoice number in the
master row.

Sometimes, though, the relation-
ship can be a temporal relation-
ship. That is, the related rows may
be different depending on an
effective date in the data. In our
invoicing example, the items
ordered may have different prices

associated with them depending
on when they are ordered. Price
changes might be recorded in the
system but would not go into effect
until the first of next month, for
example. Advance orders might be
taken and post-dated, so as not to
be processed and shipped until
after the price changes take place.

Effective dating of data can pop
up in a number of areas. Product
price changes are an obvious
example. Payroll information can
have a number of effective dates as
salary, deduction, and tax changes
go into effect at different times.
Almost anytime you have histori-
cal data, you will most likely have
many reference tables with effec-
tive dates because the reference
information changes over the
course of time. I worked on one
project many years ago for the mili-
tary which consolidated data on all
the officers in the US Air Force over
a 30 year time span. You can imag-
ine over the course of 30 years how
often the various codes in the data
changed meaning.

The particular problem I want to
work through here is an issue with
automatic salary increases. This is
not a specific problem you are
likely to run into, but it does serve
to illustrate how we can use SQL to
do some hard core data process-
ing, particularly involving effective
dated information.

The Problem
In some organizations employees
are automatically given an
increase in pay after serving a
certain number of weeks, months,
or years at a particular level. This
level is usually referred to as a
‘step’. A person might be hired at
step 1, which would remain in
effect for 90 days (the probation-
ary period, for example). After
90 days, that person would
automatically progress to step 2,

supposedly with an increase in
salary. After six months in step 2,
the employee would automatically
progress to step 3. And so on.

Obviously, not every employee
would have the same pay sched-
ule, either in terms of rate of pay or
in the interval between steps. So
we break down all the possible pay
configurations into ‘pay scales’. An
employee is assigned a single pay
scale. A pay scale consists of all the
steps which define the pay rates
and the interval between steps
(one pay scale to many pay steps).
Figure 1 shows an example of two
pay scales. Notice that there is no
interval on the last step of a pay
scale. Since it is the last step, there
is nowhere left to go, so it doesn’t
make much sense to define an
amount of time it will take to get
nowhere.

Over the course of time, the pay
scale itself will change. For exam-
ple, floor managers at step 3 are
paid $9.50, but starting 10 Septem-
ber the pay rate for step 3 will be
changed to $9.75 (to keep up with
inflation I suppose). Figure 2
shows how the pay scale for floor

Pay Scale FM: Floor Manager

Pay Step Pay Rate
(hourly)

Interval
(days)

1 $7.00 90

2 $9.00 120

3 $9.50 120

4 $10.50 120

5 $11.50 0

Pay Scale AM: Apprentice

Pay Step Pay Rate
(hourly)

Interval
(days)

1 $5.15 90

2 $6.50 180

3 $7.00 180

4 $9.00 0

➤ Figure 1

April 1999 The Delphi Magazine 25

managers changes over time.
Notice in the third version we
added an additional step to the pay
scale.

The Data Design
Because the step schedules are not
static, we must effective date the
data and take these effective dates
into account when advancing
employees from one step to the
next. Figure 3 shows how we might
store this data in a table. Notice
that the only changes in the pay
scale for 31 Dec 1999 are in steps 4,
5, and 6. Steps 1, 2, and 3 are the
same as the previous version of the
pay scale so we don’t store them
again in the table. We only store
the ones that have changed.

To make the SQL statements
easier to write and interpret, a con-
vention used here at Ultimate Soft-
ware is to prefix all columns of a
table with a unique three character

Pay Scale FM (as of 1 Jan 99)

Pay Step Pay Rate Interval

1 $7.00 90

2 $9.00 120

3 $9.50 120

4 $10.50 120

5 $11.50 0

Pay Scale FM (as of 10 Sep 99)

Pay Step Pay Rate Interval

1 $7.25 90

2 $9.25 120

3 $9.75 120

4 $10.75 120

5 $11.75 0

Pay Scale FM (as of 31 Dec 99)

Pay Step Pay Rate Interval

1 $7.25 90

2 $9.25 120

3 $9.75 120

4 $10.85 120

5 $11.75 180

6 $13.00 0

➤ Figure 2

code. Therefore, all the columns in
the PaySteps table begin with the
prefix Stp. When dealing with long
select lists and complex WHERE
clauses in multi-table queries, this
convention makes life much sim-
pler without having to resort to
table aliases.

You may think that all we really
need is the most recent schedule,
so why not just overwrite the pay
step table with new data? That
would greatly simplify our pro-
cessing of advancing employees
through the step schedule. How-
ever, it is not uncommon to have to
reproduce payroll data for a point
in time in the past. Reproducing
lost data, recalculating a paycheck
for a previous period, calculating
back pay owed. These are all exam-
ples of why we might have to pro-
duce pay calculations for any given
point in time, not just today. The
same is true for most other applica-
tions of effective dates, otherwise
why would be bother with them?

Figure 4 shows our Employees
table containing one row per
employee. Many of the columns in
this table won’t be used until the
second half of this article. The
EmpEmployeeID column uniquely
identifies each employee. This is
what we’ll use to relocate employ-
ees when we need to change their
data. EmpHourlyPayRate is the

employee’s current hourly wage.
For now we will assume all employ-
ees are paid hourly. The identifier
for the employee’s pay scale is in
EmpPayScaleCode and the date of
their next pay review is in
EmpDateOfNextPayReview. This is the
date when they are due to be
advanced to the next pay step in
their pay scale.

For those employees whose
EmpDateOfNextPayReview is today
(or before today if it fell on a non-
business day), we want to advance
them to their next pay step, adjust
their pay rate, and calculate a new
EmpDateOfNextPayReview based on
the interval for the new pay step.
Once an employee reaches the last
step number, we no longer
advance them (where would we
advance them to?). Since the inter-
val on the last step number is zero,
their date of next pay review is left
unchanged; we simply ignore
them.

Here’s an example. It is 6 July
1999 and Floyd is a floor manager
at step 3. Floyd is currently paid
$9.50 an hour and his next
scheduled pay review date is 25
September 1999. This happens to
fall on a weekend, so when the
system is run on Monday 27
September 1999, we find Floyd

PaySteps Table

StpPayScaleCode StpStepNo StpEffDate StpRate StpInterval

AM 1 1 Jan 1999 $5.15 90

AM 2 1 Jan 1999 $6.50 180

AM 3 1 Jan 1999 $7.00 180

AM 4 1 Jan 1999 $9.00 0

FM 1 1 Jan 1999 $7.00 90

FM 2 1 Jan 1999 $9.00 120

FM 3 1 Jan 1999 $9.50 120

FM 4 1 Jan 1999 $10.50 120

FM 5 1 Jan 1999 $11.50 0

FM 1 10 Sep 1999 $7.25 90

FM 2 10 Sep 1999 $9.25 120

FM 3 10 Sep 1999 $9.75 120

FM 4 10 Sep 1999 $10.75 120

FM 5 10 Sep 1999 $11.75 0

FM 4 31 Dec 1999 $10.85 120

FM 5 31 Dec 1999 $11.75 180

FM 6 31 Dec 1999 $13.00 0

➤ Figure 3

26 The Delphi Magazine Issue 44

because his EmpDateOfNextPay
Review is less than or equal to the
current date. We load the pay steps
for pay scale FM and find that Floyd
needs to advance from step 3 to
step 4, which means a new pay rate
of $10.75. The interval for step 4 is
120 days so we add 120 days to
Floyd’s original pay review date
(25 September 1999), not the cur-
rent date (27 September 1999), and
give Floyd a new pay review date of
23 January 2000.

Figuring Floyd’s Financials
This is enough to get started. The
SQL shown in this article is for
Microsoft SQL Server. There may
be a few differences in the exact
SQL syntax available for the partic-
ular RDBMS you are using.

Our first task is to isolate
employees who are eligible for a
step increase on a given date. Obvi-
ously we will select those employ-
ees whose EmpDateOfNextPayReview
is less than or equal to the process
date. It seems reasonable that only
a tiny fraction of the all the employ-
ees would have pay reviews due on
any given day. An obvious optimi-
zation would be to index the
EmpDateOfNextPayReview column so
that we can quickly find those
employees of concern to us.

Our first cut at finding Floyd and
giving him a pay raise might be
what we have in Listing 1. We join

the Employees table with the
PaySteps table where the pay scale
codes match and the step number
in PaySteps is one greater than the
current step number for the
employee. This will give us the new
step. But as you can see, our logic
gives us three possible pay raises
for Floyd. Floyd is currently at step
3 and would be advanced into step
4, but there are three different
rows for step 4 in Floyd’s pay scale,
each of which are effective in a
different time interval.

Out of this set what we really
want is the pay step row whose

effective date is closest to the pro-
cess date without going over (I
suddenly feel like I’m on a game
show). We can add a correlated
subquery to refine our logic, as
shown in Listing 2.

The subquery executes for each
row in the outer query and uses
the current values of the outer
query’s columns (the EmpPayScale
Code and EmpStepNo columns) as
values for its WHERE clause. This
correctly isolates the pay step
row. The additional load of the
subquery is minimized because
the PaySteps table would be rela-
tively small compared to the
Employees table. The affected
PaySteps rows would most likely
have already been brought into the
data cache by the outer query.
Depending on the indexing of
PaySteps, it’s possible the
subquery data is covered by an
index and could be retrieved
entirely from index cache.

Notice that we are using an inner
join between the Employees and
PaySteps tables. What happens
when the employee is already at
the last pay step? There would be
no ‘next step’ row in PaySteps to
join with, therefore no rows would
be returned. That’s true and it so
happens that’s exactly what we
want. Since we can’t advance these
employees and we can’t calculate a

Employee Table

Column Name Datatype Value for Floyd

EmpEmployeeID Integer 1001

EmpName VarChar(20) Barber, Floyd

EmpHourlyOrSalary Char(1) H

EmpPayPeriod SmallInt 26

EmpHourlyPayRate Money $9.50

EmpAnnualPayRate Money $19,760.00

EmpWeeklyPayRate Money $380.00

EmpPeriodPayRate Money $760.00

EmpScheduledWorkHours Float 80.0

EmpDateOfNextSalaryReview DateTime 25 Sep 1999

EmpJobCode Char(5) JP

EmpPayScaleCode Char(5) FM

EmpStepNo SmallInt 3

➤ Figure 4

DECLARE @ProcessDate datetime
SELECT @ProcessDate = '27 Sep 1999'
SELECT EmpEmployeeID, StpStepNo, StpRate, StpEffDate, StpInterval
FROM Employees, PaySteps
WHERE EmpDateOfNextPayReview <= @ProcessDate AND

EmpPayScaleCode = StpPayScaleCode AND
EmpStepNo + 1 = StpStepNo

EmpEmployeeID StpStepNo StpRate StpEffDate StpInterval
============= ========= ======= ============== ===========
1 4 10.50 Jan 1 1999 120
1 4 10.75 Sep 10 1999 120
1 4 10.85 Dec 31 1999 120

DECLARE @ProcessDate datetime
SELECT @ProcessDate = '27 Sep 1999'
SELECT EmpEmployeeID, StpStepNo, StpRate, StpEffDate, StpInterval
FROM Employees, PaySteps
WHERE EmpDateOfNextPayReview <= @ProcessDate AND

EmpPayScaleCode = StpPayScaleCode AND
EmpStepNo + 1 = StpStepNo AND
StpEffDate =

(SELECT Max(StpEffDate) FROM PaySteps
WHERE StpPayScaleCode = EmpPayScaleCode AND

StpStepNo = EmpStepNo + 1 AND
StpEffDate <= @ProcessDate)

EmpEmployeeID StpStepNo StpRate StpEffDate StpInterval
============= ========= ======= ============== ===========
1 4 10.75 Sep 10 1999 120

➤ Above: Listing 1 ➤ Below: Listing 2

April 1999 The Delphi Magazine 27

new pay review date for them, we
will do nothing with them. If they
fall out of the processing because
the join failed, so much the better.
We didn’t want to see them
anyway.

Getting It Back
To The Database
Great! We were able to get the new
pay rate, but now we have to calcu-
late a new pay review date and
write this data back into the
Employees table. Surely we are
stuck now and must resort to
Delphi code to finish the job? Not
quite.

Calculating the new review date
is going to depend on how robust
the SQL implementation is for your
RDBMS. Microsoft SQL Server pro-
vides a DateAdd function which
adds a given number of days (or
weeks, or months, or whatever) to
a given date and returns the result-
ing date. This is exactly what we
want.

Once we have the data calcula-
tions, we have to iterate through
each row in the result set and issue
an UPDATE statement to change the

relevant columns in the Employees
table.

In Listing 3 we use a server-side
cursor against the same query we
developed in Listing 2 to do that. I
did change one thing in the query. I
swapped out the pay step effective
date from the result set and substi-
tuted the employee’s review date.
We need this in order to calculate
the new review date.

You Thought We Were Done?
That was the easy part. Now let’s
make it hard. Here are a few twists.

Some employees are paid by the
hour and some are paid a fixed
salary. Even for employees using
the same pay scale, one may be
hourly and one may be salary.

For all employees (whether paid
hourly or salaried) we calculate
the hourly, annual, weekly and
period pay rates and store them in
the employee row. The period pay
rate is what would normally
appear on their paycheck. If the
company pays its employees every
two weeks, then the period pay
rate is twice the weekly pay rate, or
1/26th of the annual pay rate.

The granularity of the pay step
intervals is configurable. One pay

scale might have step intervals
specified in number of days while
other pay scales might specify the
interval in number of weeks or
months.

Each employee is assigned a ‘job
code’ identifying their position in
the company. This is independent
of the pay scale code. For example,
two government employees might
both be GS-6 (pay scale), but one
might be an administrative clerk
and the other might be a security
guard (job codes). Job codes may
be assigned a maximum pay rate.
No matter what the pay scale
schedule says, that employee
cannot be paid more than the max-
imum pay rate assigned to the job
code. However, not every job code
has a maximum pay rate.

And we’re going to do every bit
of it in SQL. What looks like a
daunting task when you read the
real-world requirements actually
boils down to some simple joins
and straightforward arithmetic.
First we need to make some
changes to our table structures to
accommodate the new require-
ments. The Employees and PaySteps
table don’t need to change, but
Figure 5 shows two new tables.

The JobCodes table is a simple
reference table which defines the
pay limits for a particular job.
Some jobs may not have pay limits
and those are indicated by nulls in
the max rate columns. The
PayScales table is also a reference
table describing each pay scale.
The specific piece of information
that interests us is the
PscIntervalType column which
tells us whether the interval in the
pay steps is expressed as days,
weeks, or months.

Those extra columns in the
Employees table bear a bit of expla-
nation now. The columns to hold
the various pay rates should be
obvious. EmpHourlyOrSalary is a
simply H or S flag to indicate how
the employee is paid. EmpPayPeriod
is the number of pay periods in a
year and indicates how frequently
the employee is paid. Floyd is paid
biweekly, so his pay frequency is
26 (26 pay periods in a year). We
could have also stored a code in
this column, like B for biweekly, but

DECLARE @ProcessDate datetime
SELECT @ProcessDate = '27 Sep 1999'
DECLARE @EmployeeID int
DECLARE @NewStepNo smallint
DECLARE @NewPayRate money
DECLARE @NewReviewDate datetime
DECLARE @StepInterval smallint
DECLARE @OriginalReviewDate datetime
/* Define our query as a cursor */
DECLARE EmpPaySteps INSENSITIVE CURSOR FOR
SELECT EmpEmployeeID, EmpDateOfNextPayReview, StpStepNo,

StpRate, StpInterval
FROM Employees, PaySteps
WHERE EmpDateOfNextPayReview <= @ProcessDate AND

EmpPayScaleCode = StpPayScaleCode AND
EmpStepNo + 1 = StpStepNo AND
StpEffDate =
(SELECT Max(StpEffDate) FROM PaySteps

WHERE StpPayScaleCode = EmpPayScaleCode AND
StpStepNo = EmpStepNo + 1 AND
StpEffDate <= @ProcessDate)

FOR READ ONLY
/* Open the cursor for processing */
OPEN EmpPaySteps
/* Fetch the first row of the cursor; put column values into */
/* local variables */
FETCH NEXT FROM EmpPaySteps
INTO @EmployeeID, @OriginalReviewDate, @NewStepNo,

@NewPayRate, @StepInterval
WHILE @@fetch_status = 0 /* check for EOF on the cursor */
BEGIN
UPDATE Employees SET
EmpStepNo = @NewStepNo,
EmpHourlyPayRate = @NewPayRate,
EmpDateOfNextPayReview =

dateadd(day, @StepInterval, @OriginalReviewDate)
WHERE EmpEmployeeID = @EmployeeID

/* get the next row from the cursor */
FETCH NEXT FROM EmpPaySteps
INTO @EmployeeID, @OriginalReviewDate, @NewStepNo,

@NewPayRate, @StepInterval
END
/* close and deallocate the cursor resources */
DEALLOCATE EmpPaySteps

➤ Listing 3

28 The Delphi Magazine Issue 44

that would just have had to be
translated into the number of pay
periods anyway.

EmpScheduledWorkHours is all
employees whether hourly or
salary and indicates the normal
number of hours the employee
works in a pay period. For salaried
employees, we would just assume
40 hours per work week, regard-
less of actual hours worked (we all
know how that feels). This also
allows us to make adjustments for
part-time employees by reducing
the number of scheduled work
hours. Since Floyd is full time and
is paid every two weeks, his sched-
uled work hours for the pay period
is 80 (2 work weeks of 40 hours
each).

EmpJobCode is a link to the
JobCodes table to indicate the
employee’s specific job. Floyd is a
floor manager in the parts depart-
ment (job code JP) and is paid
according to the pay scale for floor

managers (pay scale code FM). A
floor manager in the repair bays
may be paid from the same pay
scale as Floyd, but may have differ-
ent job characteristics. No matter
how far Floyd advances through
the pay steps, he cannot be paid
more than $12.00 an hour because
that is the cap for his position.

Even though we have to deal
with hourly and salaried employ-
ees, the PaySteps and JobCodes

tables represent pay rates in terms
of hourly wages. For salaried
employees we can always use
arithmetic to arrive at the
annualized pay rate. In reality, we
might actually store both hourly
and annual pay rates in these
tables. But I thought we had
enough to worry about in this
article without getting overly
complicated.

We need to get all this additional
information into our main query.
The additional columns in the
Employees table are trivial; we
simply add the column names in
the select list. To get the additional
info from the new JobCodes and
PayScales table we have to join
them. Listing 4 shows our revised
query (which we would replace in
the DECLARE CURSOR statement in
Listing 3).

Once we have all the data
together, the rest of the tasks are
relatively simple calculations. List-
ing 5 shows the new processing
loop. To save space I didn’t show
the variable declarations, so
assume local variables (those that
start with @) are declared of the
appropriate datatype.

If a maximum pay rate is defined
(by the JobCode table), then we
ensure that the new pay rate does
not exceed the maximum. When
computing all the different pay
rates, we start with the annual pay.
If we multiply the number of pay
periods in a year by the number of
scheduled hours the employee
works in one pay period, then we
get the number of scheduled hours
for a year. Simply multiplying that
result by the hourly rate gives us

FETCH NEXT FROM EmpPaySteps
INTO @EmployeeID, @HourlyOrSalary, @OriginalReviewDate,

@PayPeriod, @ScheduledWorkHours, @MaxHourlyRate,
@IntervalType, @NewStepNo, @NewHourlyPayRate, @StepInterval

WHILE @@fetch_status = 0
BEGIN
/* Check for pay caps. Do not increase above pay cap, if any. */
IF @MaxHourlyRate IS NOT NULL AND @NewHourlyPayRate > @MaxHourlyRate
SELECT @NewHourlyPayRate = @MaxHourlyPayRate

/* Compute new pay rates */
SELECT @NewAnnualPayRate =

@NewHourlyPayRate * @ScheduledWorkHours * @PayPeriod
SELECT @NewWeeklyPayRate = @NewAnnualPayRate / 52
SELECT @NewPeriodPayRate = @NewHourlyPayRate * @ScheduledWorkHours
SELECT @NewReviewDate =

CASE @IntervalType
WHEN "D" THEN
dateadd(day, @StepInterval, @OriginalReviewDate)

WHEN "W" THEN
dateadd(week, @StepInterval, @OriginalReviewDate)

WHEN "M" THEN
dateadd(month, @StepInterval, @OriginalReviewDate)

END
UPDATE Employees SET

EmpStepNo = @NewStepNo,
EmpHourlyPayRate = @NewHourlyPayRate,
EmpAnnualPayRate = @NewAnnualPayRate,
EmpWeeklyPayRate = @NewWeeklyPayRate,
EmpPeriodPayRate = @NewPeriodPayRate,
EmpDateOfNextPayReview = @NewReviewDate
WHERE EmpEmployeeID = @EmployeeID

FETCH NEXT FROM EmpPaySteps
INTO @EmployeeID, @HourlyOrSalary, @OriginalReviewDate,

@PayPeriod, @ScheduledWorkHours, @MaxHourlyRate,
@IntervalType, @NewStepNo, @NewHourlyPayRate, @StepInterval

END

➤ Above: Listing 4 ➤ Below: Listing 5

JobCodes Table

JbcJobCode JbcDescription JbcMaxHourlyRate

JP Parts Manager $12.00

JR Repair Manager (null)

PayScales Table

PscPayScaleCode PscDescription PscIntervalType

AM Apprentice M

FM Floor Manager D

➤ Figure 5

SELECT EmpEmployeeID, EmpHourlyOrSalary, EmpDateOfNextPayReview,
EmpPayPeriod, EmpScheduledWorkHours, JbcMaxHourlyRate,
PscIntervalType, StpStepNo, StpRate, StpInterval

FROM Employees, JobCodes, PayScales, PaySteps
WHERE EmpDateOfNextPayReview <= @ProcessDate AND

EmpJobCode = JbcJobCode AND /* join to JobCodes */
EmpPayScaleCode = PscPayScaleCode AND /* join to PayScales */
EmpPayScaleCode = StpPayScaleCode AND /* join to PaySteps */
EmpStepNo + 1 = StpStepNo AND /* join to PaySteps */
StpEffDate = /* join to PaySteps */
(SELECT Max(StpEffDate) FROM PaySteps

WHERE StpPayScaleCode = EmpPayScaleCode AND
StpStepNo = EmpStepNo + 1 AND
StpEffDate <= @ProcessDate)

April 1999 The Delphi Magazine 29

the annual rate. We avoid multiply-
ing the hourly rate by 2,080 (40
hours per week times 52 weeks in a
year) because employees may be
part time. In that case we would
mistakenly calculate a full-time
annual pay rate for them. That is
why we must define the number of
scheduled hours in a pay period.

Like before, the new pay review
date is determined by adding the
pay step interval to the original
review date. However, now our pay
step intervals may represent differ-
ent units of time. The interval type
from the PayScale table tells us
what unit of time to use and we
simply call the DateAdd function
appropriately for each type. The
CASE expression is available in
most SQL implementations, or you
can use nested IF statements.

The CASE expression is not a con-
trol structure like you would find in
C++ or Delphi. Instead, it returns a
result much like a function. The
case values are identified by the
WHEN clauses and when a match is
found, the expression following the
THEN clause is returned as the
result of the CASE expression.

Conclusion
What I wanted to accomplish with
this article is to throw some poten-
tially complex data processing
requirements at you and show you
that with a little insight, the work
can be accomplished with rela-
tively simple SQL code. The ability
to use joins and subqueries in
SELECT statements makes SQL a
very powerful, compact tool for
gathering related data.

Steve Troxell is a software
engineer with Ultimate Software
Group in the USA. He can be
contacted by email at
Steve_Troxell@USGroup.com

	The Problem
	The Data Design
	Figuring Floyd’s Financials
	Getting It Back To The Database
	You Thought We Were Done?
	Conclusion

